Solid-State Nuclear Magnetic Resonance Study of Acetone Oxime Adsorbed on CuZSM-5 and on HZSM-5

Jianjun Wu and Sarah C. Larsen¹

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received September 11, 1998; revised November 11, 1998; accepted November 19, 1998

The reactions of acetone oxime, a proposed reaction intermediate for the selective catalytic reduction (SCR) of NO with propane on CuZSM-5 and on HZSM-5, have been studied with ¹³C and ¹⁵N solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR). The carbon- and/or nitrogen-containing surface species, as well as the products formed under conditions of thermodynamic equilibrium, have been monitored and identified. In the absence of NO and after heating to 150-200°C, the main hydrolysis products of adsorbed acetone oxime on CuZSM-5 are acetone and hydroxylamine, while the main hydrolysis products on HZSM-5 are acetic acid and methylamine. In addition, N₂ and N₂O are formed from acetone oxime adsorbed on both HZSM-5 and CuZSM-5. In the presence of 15 NO, the observation of mixed-labeled 14 N 15 NO and 15 N 14 NO shows that new N–N bonds are formed over CuZSM-5 and HZSM-5 between two different nitrogen atoms: one from gaseous ¹⁵NO molecules and the other from adsorbed acetone oxime and/or acetone oxime hydrolysis products. When ¹⁵NO and unlabeled acetone oxime are reacted on CuZSM-5, the ¹⁴N¹⁵NO/¹⁵N¹⁴NO ratio is approximately 3, suggesting that the NO bond of gas-phase NO remains intact when it reacts with acetone oxime to form N₂O. It is also found that the formation of new N-N bonds from the reaction of NO and acetone oxime occurs at room temperature on CuZSM-5, but not until \sim 150°C on HZSM-5. © 1999 Academic Press

Key Words: selective catalytic reduction; solid-state nuclear magnetic resonance; CuZSM-5; HZSM-5; acetone oxime.

INTRODUCTION

The emission of NO_x from stationary and automotive sources, such as power plants and lean-burn engines, is a major environmental pollution issue. The catalytic reduction of NO_x to N_2 is an important environmental challenge. The current commercial technology uses NH_3 for the selective catalytic reduction of NO_x (SCR- NH_3) from stationary sources (1). However, many drawbacks are associated with the use of ammonia as a reducing agent, such as the handling, storage, and slippage of ammonia, equipment corrosion, and high operating costs. For practical reasons, the

¹ To whom correspondence should be addressed. Fax: (319) 335–1270. E-mail: sarah-larsen@uiowa.edu.

selective catalytic reduction of NO_x by hydrocarbons (SCR-HC), particularly in the presence of oxygen, has attracted much interest (2–4). SCR of NO_x by hydrocarbons may also be important for applications to lean-burn gasoline and diesel engines where noble-metal three-way catalysts are not effective in the presence of excess oxygen (5).

Different hydrocarbons and various metal ion-exchanged zeolite catalysts have been evaluated for SCR-HC. Although other metal-exchanged zeolite catalysts are also active for the SCR of NO_x CuZSM-5 has been intensively studied (6–9). Numerous studies have been conducted, with much of the research focusing on the evaluation of catalyst performance and measurement of reaction kinetics, with less emphasis on the structural characterization and spectroscopic identification of surface species. Currently, several different reaction intermediates have been proposed for the conversion from NO_x to N₂, such as an adsorbed nitrogen oxide complex NO_y ($y \ge 2$) (10–12), a carbonaceous deposit (13), oxygenated hydrocarbons (14, 15), isocyanates (16), nitrite and nitrate complexes (17), and nitro or nitroso compounds (10, 18–22).

Recently, the role of the surface nitroso complex was examined by Beutel et al. (10, 23). It was reported that NO reacts with alkyl radicals, which have been formed by H-abstraction and the H-abstraction is mediated by the chemisorbed NO_v complex, to form nitro- or nitrosoalkanes (10, 23, 24). The nitroso-alkanes are unstable and should immediately isomerize to form an oxime (25). Beutel et al. have studied the interaction of the isomerization product of nitrosopropane, ¹⁴N-labeled acetone oxime, with ¹⁵NO on CuZSM-5 (10). They observed the production of ¹⁴N¹⁵N and ¹⁴N¹⁵NO (and/or ¹⁵N¹⁴NO) by the combination of FT-IR surface studies and mass spectrometry for gasphase analysis. The isotopic labeling studies show that N-N bonds form via interaction of gaseous NO with an adsorbed oxime complex. However, ¹⁴N¹⁵NO and ¹⁵N¹⁴NO were not distinguished in those studies.

Motivated by these previous results, we have used solidstate MAS NMR (magic-angle spinning nuclear magnetic resonance) spectroscopy to study the reactions of the proposed reaction intermediate, acetone oxime, on CuZSM-5

TABLE 1

Elemental Analysis Data for Zeolite Samples

can be used to obtain valuable structural and mechanistic
information about catalysts. Previous NMR studies have
demonstrated numerous applications of NMR in which
catalytic reactions on zeolites have been monitored and
surface phenomena on supported metal catalysts have been
studied (26-28). In this paper, solid-state NMR studies
were initiated to investigate the interaction of adsorbed
acetone oxime and its hydrolysis products with NO on
CuZSM-5 and HZSM-5, which are both active for SCR-
HC. Through the combination of ¹³ C and ¹⁵ N NMR and
isotopic labeling, the carbon- and/or nitrogen-containing
adsorbed surface species and/or gaseous products formed
under conditions of thermodynamic equilibrium were
monitored and identified.

and HZSM-5. NMR is a powerful noninvasive probe that

EXPERIMENTAL

Synthesis and Characterization of Catalysts

NaZSM-5 zeolite was hydrothermally prepared by a template-free synthesis procedure (29–31). Al(OH)₃ 3.0 g and NaOH 6.0 g were dissolved in 250 ml of deionized water and were added slowly with stirring to 106.5 g of silica sol (Ludox 40%). Seed crystals of ZSM-5 (0.37 g) were then added to the above gel mixture to promote crystallization. The gel was transferred to Teflon-lined Parr autoclaves, placed in an oven, and heated to 453 K for 48 h. The crystallized zeolite was washed with deionized water and dried overnight at 353 K. The crystallinity of NaZSM-5 was verified by powder X-ray diffraction (XRD) on a Siemens (D5000) diffractometer. The crystal morphology and size were examined by scanning electron microscopy (SEM) on Hitachi s-4000 SEM. The elemental composition of Al and Si was determined by inductively coupled plasma/atomic emission spectroscopy (ICP/AES) using a Perkin-Elmer Plasma 400. The framework and/or nonframework aluminum and the local Si/Al distribution were characterized by ²⁷Al and ²⁹Si MAS NMR, respectively.

Copper-exchanged ZSM-5 (CuZSM-5) was prepared by a conventional ion-exchange method (31). A 200-ml aqueous solution of 0.01 M Cu(NO₃)₂ was added to 2 g of NaZSM-5 and the mixture was stirred for 24 h at room temperature. The product was filtered, washed with 1 liter deionized water, and finally dried in air. The content of Cu in the CuZSM-5 sample was 2.4 wt% [corresponding to 120% exchanged (2x Cu)/Al)] by ICP/AES. The XRD pattern, Si/Al ratio (see Table 1), and ²⁷Al, ²⁹Si MAS NMR of the CuZSM-5 were identical to those of the parent NaZSM-5, implying that the Cu ions were incorporated into the ZSM-5 cavities without formation of large CuO crystals in the pore structure or on the external surface of zeolite. The CuZSM-5 was degassed (1×10^{-3} Torr, 1 Torr =

Catalyst	wt% Si	wt% Al	wt% Cu	Si/Al	Cu/Al
NaZSM-5	46.7	1.76	_	25.4	_
CuZSM-5	44.8	1.70	2.4	25.3	0.60
HZSM-5	49.0	1.80	—	26.1	

133.3 Pa) prior to being used in the adsorption and reaction.

HZSM-5 catalyst was prepared by exchanging the Na⁺ in NaZSM-5 with NH₄⁺ which subsequently decomposed to produce NH₃ and the Brønsted site. The exchange was achieved by soaking 10 g of NaZSM-5 in 500 ml of 0.1 M NH₄NO₃ for 24 h and drying the product at 80°C for 2 h. The final step was to heat the product under vacuum (10⁻⁵ Torr) to 400°C over 6 h, and then to maintain this temperature for 18 h. The HZSM-5 was characterized using the procedure described above for CuZSM-5. The elemental analysis data for NaZSM-5, CuZSM-5, and HZSM-5 are shown in Table 1. Using ICP/AES, no measurable amount of impurity Fe was found in these zeolites.

Synthesis of Labeled Acetone Oxime

The ¹³C (C-2 labeled)- and ¹⁵N-labeled acetone oximes were synthesized according to procedures in the literature (32). For the synthesis of acetone $[2^{-13}C]$ oxime, 0.5 g of hydroxylamine hydrochloride was dissolved in 2 ml of deionized water in a small beaker. [2-13C]Acetone-2-13C 0.75 g was added to the beaker, followed by the dropwise addition of saturated NaHCO₃ with stirring until the pH reached 7.0. The mixture was stirred for 3 h, and then the product was extracted with two 10-ml portions of ethyl ether. The solvent was removed by distilling and the product was recrystallized from petroleum ether. ¹⁵N-labeled acetone oxime was synthesized as described above, except that the reactants were acetone and ¹⁵N-labeled hydroxylamine hydrochloride. The synthesized ¹³C- or ¹⁵N-labeled acetone oxime was characterized by FT-IR and ¹H, ¹³C solution-state NMR. The synthesized labeled acetone oxime products were found to be identical to the acetone oxime (ACROS) that was used as a standard.

Reagents and Materials

 $[2^{-13}C]$ Acetone (99% ^{13}C) was obtained from Isotech. [^{15}N]Hydroxylamine hydrochloride (98%+ ^{15}N), [^{15}N]methylamine hydrochloride (98%+ ^{15}N), [^{15}N]nitric oxide (98%+ ^{15}N), and [$1^{-13}C$]acetic acid (99% ^{13}C) were obtained from Cambridge Isotope. All of these compounds were used as purchased. Acetone oxime (98%) was obtained from Acros. Nitric oxide (C.P., 99% min) was obtained from Matheson. Acetone and petroleum ether were obtained from Fisher Scientific. Ethyl ether (GR), sodium bicarbonate (GR), and sodium hydroxide (GR) were obtained from EM Science. Hydroxylamine hydrochloride (99%), sodium isocyanate (96%), *N*-methylacetamide (99%+), methylamine (40 wt% solution in water), aluminum hydroxide hydrate (Al(OH)₃ · *x*H₂O), and Ludox (40%) were obtained from Aldrich.

Preparation of Samples

CuZSM-5 or HZSM-5, typically 0.3 g, was impregnated *ex situ* with an aqueous acetone oxime solution. Samples with acetone oxime/(H or Cu) ratios of 1:1, 3:1, and 8:1 were prepared. Samples were also prepared by impregnation of hydroxylamine hydrochloride or methylamine hydrochloride or CuZSM-5 or HZSM-5 with a 1:1 loading. Another sample was also prepared with acetone adsorbed on CuZSM-5.

All the samples, preadsorbed with acetone oxime, hydroxylamine, methylamine, or acetone, were dried at room temperature to avoid decomposition, and then were loaded into glass ampoules. The glass ampoule was a modified version of a design used by Haw and co-workers (26). The glass ampoule was prepared by attaching a 6.0-mm Pyrex tube with an \sim 1.5-mm neck to a vacuum valve. A small glass rod held by an aluminum disk was placed into the neck of the ampoule to ensure concentric and symmetric sealing of the ampoule. The aluminum disk had several holes in it, with the central hole to hold the glass rod and the other holes to permit the free passage of gases to the zeolite samples. The glass ampoules were outgassed in situ on a vacuum rack, and then nitric oxide was introduced into the ampoules on the vacuum rack by immersing the ampoule in liquid nitrogen. A torch was used to seal the ampoule. The nitric oxide introduced into the ampoules contained $1.5-3.0 \times 10^{17}$ molecules of NO. Nitric oxide was the limiting reagent when acetone oxime and NO were both added to samples of HZSM-5 or CuZSM-5. The sealed ampoules were then placed in Chemagnetics 7.5-mm (o.d.) pencil rotors for magic-angle spinning (MAS) NMR measurements. Incremental off-line heating of the samples was used and the reaction temperature was controlled by an Omega (CN-76000) programmable temperature controller.

Various samples, with the following different combinations of adsorbates on CuZSM-5 and on HZSM-5, were prepared: acetone [15 N]oxime, acetone [$^{2-13}$ C]oxime, [15 N]hydroxylamine hydrochloride, acetone [$^{2-13}$ C]oxime + 14 NO, acetone oxime + 15 NO, acetone [$^{2-15}$ N]oxime + 14 NO, [15 N]hydroxylamine hydrochloride + NO, hydroxylamine hydrochloride + 15 NO, [15 N]methylamine hydrochloride + acetone, methylamine hydrochloride + 15 NO, [15 N]methylamine hydrochloride + NO, 15 NO only, as well as (acetone + 15 NO) on CuZSM-5.

NMR Spectroscopy

All the ²⁷Al, ²⁹Si, ¹³C, and ¹⁵N NMR spectra were obtained using a wide-bore Bruker MSL-300 NMR spectrometer operating at 78.205, 59.621, 75.470, and 30.425 MHz for ²⁷Ål, ²⁹Si, ¹³C, and ¹⁵N, respectively. A Chemagnetics double-channel 7.5-mm pencil MAS probe was used to spin rotors loaded with the sealed samples at 4.5-5.0 kHz at the magic angle. Single-pulse direct excitation was used for 27 Al, 29 Si, and 15 N, with the $\pi/2$ pulse widths of 3.5, 6.0, and 7.0 μ s, respectively. Recycle delay was 1 s for ²⁷Al, 10 s for ²⁹Si, and 1 s for ¹⁵N. Several pulse sequences, such as crosspolarization (CP), single-pulse excitation with high-power proton decoupling, and single-pulse direct excitation were used for ¹³C NMR signal acquisition with the following parameters: CP, contact time 1.5 ms, recycle delay 2.5 s, typical 90° pulse length 7.0 μ s, single-pulse direct excitation: recycle delay 3 s, $\pi/2$ pulse length ranging from 6.0 to 8.0 μ s. A line broadening of 50 Hz was used for ¹⁵N spectra, and one of 10 Hz for ²⁷Al, ²⁹Si, and ¹³C spectra. Tetramethylsilane (TMS) and 1 M Al(NO₃)₃ solution were used as chemical shift references for ²⁹Si and ²⁷Al, respectively. Solid adamantane mixed with KBr (28.5 ppm) and saturated NH₄ $^{15}NO_3$ (-4 ppm) were used as external chemical shift standards for ¹³C and ¹⁵N. All the chemical shifts for ¹³C and ¹⁵N are reported relative to TMS and to CH₃NO₂, respectively. All of the NMR spectra were acquired at 25°C. ¹³C spectra recorded with single-pulse direct excitation show a broad background signal around 110 ppm which disappears during cross-polarization experiments.

RESULTS

Decomposition of Adsorbed Acetone Oxime on HZSM-5 and on CuZSM-5

Figure 1 shows the ¹³C CP/MAS NMR spectra acquired after a sealed sample of acetone [2-13C]oxime adsorbed on HZSM-5 at 1:1 loading was heated from room temperature to 200°C and cooled to room temperature for data acquisition. For ¹³C MAS spectra, both cross-polarization and single-pulse direct excitation spectra were acquired at room temperature, but only CP/MAS spectra are shown. The ¹³C NMR peak at 172 ppm in Fig. 1a is assigned to the C-2 labeled carbon of adsorbed acetone oxime by comparison with the chemical shift for solid synthesized acetone $[2^{-13}C]$ oxime which was measured to be 156 ppm. This peak shifted to 164 ppm when the loading of acetone $[2^{-13}C]$ oxime was increased to 3:1 or 8:1 acetone oxime/H sites. Similar coverage dependence has been observed for carbonyl compounds, such as acetone, and is discussed in a later section (33, 34). There was no observable change in the ¹³C CP/MAS NMR spectrum when the acetone [2-¹³C]oxime sample was heated from room temperature to 150°C. However, after the sample was heated to 200°C

Acetone Oxime-2-13C Adsorbed on HZSM-5

FIG. 1. ¹³C CP/MAS NMR spectra of acetone $[2^{-13}C]$ oxime adsorbed on HZSM-5 before and after heating to the indicated temperatures. Asterisks denote spinning sidebands. Spectra were acquired at room temperature after the sealed sample was heated to (a) 25° C, (b) 150° C, and (c) 200° C. NS (number of scans acquired) was (a) 1800, (b) 3280, and (c) 2400.

(Fig. 1c), the 172-ppm peak assigned to the C-2 carbon of acetone [2-¹³C]oxime shifted to 176 ppm and a new peak at 197 ppm emerged. The peak at 176 ppm is assigned to the carbonyl carbon of acetic acid (33) and/or *N*-methylacetamide. In a separate experiment, the ${}^{13}C$ NMR spectra of authentic samples of N-methylacetamide and acetic acid both adsorbed on HZSM-5 yielded carbonyl peaks at 177 and 178 ppm, respectively. Therefore, since the peak observed at 176 ppm is broader than the 1-ppm difference in chemical shift between N-methylacetamide and acetic acid, it may contain contributions from both compounds. The ¹³C NMR line at 197 ppm is assigned to N-methyl-2-propanimine by comparison with the NMR data for similar imines adsorbed on HZSM-5 (34, 35). N-methyl-2-propanimine was formed by the reaction of acetone oxime hydrolysis products, acetone and methylamine. This was confirmed in a separate experiment of the reaction of adsorbed CH₃NH₂ on HZSM-5 with [2-¹³C]acetone in which a peak at approximately 195 ppm was observed in the ¹³C CP/MAS experiment. In the singlepulse direct excitation ¹³C NMR spectra of [2-¹³C]acetone oxime, a ¹³C NMR line at 124 ppm emerged after the sample was heated to 250°C and it is assigned to gas-phase CO₂ (26). Peak assignments are summarized in Table 2. The NMR spectra of samples heated in excess of 200°C are not shown because the decomposition or reaction of acetone oxime is complete by this temperature even though the relevant SCR temperature is \sim 400°C.

¹⁵N MAS NMR spectra of acetone [¹⁵N]oxime adsorbed on HZSM-5 at 1:1 loading are presented in Fig. 2. ¹⁵N

Assignments of ¹³C and ¹⁵N Chemical Shifts for Chemical Species Observed in This Study

TABLE 2

Adsorbate	δ (¹³ C-2) ^a	$\delta(^{15}\mathrm{N})^{b}$
OH OH	172 ^c (HZSM-5) 166 ^c (CuZSM-5) 156 (solid, synthe- sized- ¹³ C)	-148 ^c (HZSM-5) -102 ^c (CuZSM-5) -55 (solid, synthesized ¹⁵ N)
<u> </u>	212 ^d (CuZSM-5)	
NCH ₃	197 ^d (HZSM-5) 190 ^d (CuZSM-5)	-191 ^d (HZSM-5)
ОН	176 (HZSM-5)	
CH3NH2, NH4 NH2OH N2 N2O		-363 to -364 (HZSM-5) -298 (HZSM-5) -72 (HZSM-5, CuZSM-5) -148 ^e (HZSM-5, CuZSM-5) -232 to -235 ^f (HZSM-5, CuZSM-5

^{*a*} Reported in ppm relative to TMS.

^b Reported in ppm relative to CH₃NO₂.

 c Approximately one adsorbate molecule per Brønsted acid or cation site.

^d Adsorbate loading not known.

^e Central nitrogen of N₂O (N¹⁵NO).

^f Terminal nitrogen of N₂O (¹⁵NNO).

FIG. 2. ¹⁵N MAS NMR of acetone [¹⁵N]oxime adsorbed on HZSM-5 before and after heating to the indicated temperatures. Spectra were acquired at room temperature after the sealed sample was heated to (a) 25°C, (b) 100°C, and (c) 150°C. NS (number of scans acquired) was (a) 8400, (b) 10,600, and (c) 5500.

NMR peaks were observed at -72, -148, -191, -232, and -363 ppm. The single peak at ~ -148 ppm in Fig. 2a is assigned to acetone [¹⁵N]oxime adsorbed on HZSM-5. The measured chemical shift for solid synthesized acetone [¹⁵N]oxime is -55 ppm. The difference in ¹⁵N chemical shifts for the solid and adsorbed acetone [¹⁵N]oxime is most likely due to hydrogen bonding effects which have previously been observed for imines in solution (35, 36). When the sample was heated to 150°C and subsequently cooled for data acquisition (Fig. 2c), several new peaks appeared at -72, -148, -191, -232, and -363 ppm. The single ¹⁵N peak at -72 ppm is assigned to ${}^{15}N_2$ and the two peaks at -148 ppm (central N) and -232 ppm (terminal N) are assigned to ${}^{15}N_2O$ (37). The peak at -191 ppm in the ${}^{15}N_2$ NMR spectrum in Fig. 2c is assigned to adsorbed N-methyl-2-propanimine (35). The peak at -363 ppm is assigned to methylamine or NH_4^+ (35). A separate adsorption experiment with an authentic sample of [¹⁵N]methylamine on HZSM-5 yielded a peak at -361 ppm. Even though $^{15}NH_4^+$ would also produce a peak at \sim -363 ppm in the ¹⁵N NMR spectrum, the peak is most likely due to methylamine according to reaction schemes that are presented in the Discussion (38).

The ¹³C and ¹⁵N MAS NMR spectra of adsorbed acetone [2-¹³C]oxime and acetone [¹⁵N]oxime on CuZSM-5 (1:1 loading) are presented in Figs. 3 and 4. The ¹³C NMR peak at 166 ppm in Fig. 3a is assigned to the C-2 labeled carbon of adsorbed acetone oxime. This peak shifted to 162 ppm

FIG. 3. ¹³C MAS NMR spectra of acetone [2-¹³C]oxime adsorbed on CuZSM-5. Both single-pulse excitation and cross-polarization (CP) spectra are shown. Asterisks denote spinning sidebands. Spectra were acquired at room temperature after the sealed sample was heated to (a) 25°C CP, (b) 150°C CP, and (c) 150°C single pluse. NS (number of scans acquired) was (a) 3820, (b) 1810, and (c) 5240.

FIG. 4. ¹⁵N MAS NMR spectra of the decomposition products of acetone [¹⁵N]oxime adsorbed on CuZSM-5. Spectra were acquired at room temperature after the sealed sample was heated to the indicated temperatures: (a) 25° C, (b) 100° C, (c) 150° C. NS (number of scans acquired) was (a) 12,800, (b) 14,800, and (c) 6600.

when the loading of acetone $[2^{-13}C]$ oxime was increased to 3:1 or 8:1 acetone oxime/Cu sites. After the sealed sample was heated to 150°C and cooled to room temperature for data acquisition, ¹³C NMR peaks were observed at 212 ppm, 190 ppm (in Figs. 3b and 3c), and 176 ppm (in Fig. 3c). These peaks are assigned to the C-2 carbons of acetone (212 ppm) (33, 34), N-methyl-2-propanimine (190 ppm), and acetic acid (176 ppm) (33), respectively. The peak at \sim -102 ppm in the ¹⁵N NMR spectrum of acetone [¹⁵N]oxime at 25°C in Fig. 4a is assigned to acetone oxime adsorbed on CuZSM-5. The peak at \sim -53 ppm is assigned to acetone [¹⁵N]oxime on the external surface of the zeolite, since the chemical shift value corresponds to the chemical shift for solid acetone $[^{15}N]$ oxime $(-55 \text{ ppm vs CH}_3NO_2)$. The presence of excess acetone [¹⁵N]oxime on the external surface of the zeolite suggests that the adsorption of acetone oxime was not complete. After the sample is heated to 150° C, $^{15}N_2$ (single ^{15}N line at -72 ppm) and $^{15}N_2O$ (central N atom at -148 ppm and terminal N atom at -232 ppm) are observed in the ¹⁵N NMR spectrum as described above for HZSM-5. The broad 15 N line at -364 ppm in Figs. 4b and 4c is assigned to adsorbed methylamine or NH_4^+ (38). The broadening is a result of an interaction with paramagnetic Cu²⁺ since copper is known to strongly bind nitrogen ligands. The ¹⁵N line at -98 ppm of Fig. 4c is assigned to Nmethyl-2-propanimine. The ¹⁵N NMR peak of N-methyl-2-propanimine observed during the decomposition of acetone $[^{15}N]$ oxime on CuZSM-5 (-98 ppm) is significantly shifted from the peak observed on HZSM-5 (-191 ppm). Protonation of imines is known to produce large shifts in the observed ¹⁵N chemical shift values and this may account for the differences in the observed chemical shift values for acetone [¹⁵N]oxime and *N*-methyl-2-[¹⁵N]propanimine on HZSM-5 and CuZSM-5 (35).

Reactions of Adsorbed Acetone Oxime with NO on HZSM-5 and on CuZSM-5

The ¹⁵N MAS NMR spectra of preadsorbed acetone [¹⁵N]oxime with ¹⁴NO and adsorbed acetone [¹⁴N]oxime with ¹⁵NO on HZSM-5 and on CuZSM-5 are shown in Figs. 5 and 6. The ¹⁵N peak at \sim –148 ppm in Fig. 5a is due to adsorbed acetone [¹⁵N]oxime on HZSM-5, and the ¹⁵N peak at -102 ppm in Fig. 6a is due to the adsorbed acetone [¹⁵N]oxime on CuZSM-5 as discussed in the last section. Three main reaction products, N_2 (-72 ppm), N_2O (central N at -148 ppm and terminal N at -232 to -235 ppm), and 15 NH₃CH₂ or NH₄⁺ (at \sim -363 ppm), are observed in the 15 N NMR spectrum when acetone [¹⁵N]oxime and NO react on CuZSM-5 and HZSM-5 (35, 37, 39). For the samples of adsorbed acetone oxime and ¹⁵NO (Figs. 5d-5f and 6d-6f), N₂ and N₂O are produced at room temperature on CuZSM-5, but not until \sim 150°C on HZSM-5. The peak at -362 to -364 ppm in Figs. 5c and 6c is assigned to adsorbed methylamine or NH_4^+ . The relative intensities of the two nitrogen peaks at -148 and -235 assigned to N_2O vary depending on whether the acetone oxime or the NO is ¹⁵N-labeled. In Fig. 6e, the ratio of the relative integrated areas of the peaks at -148 and -235 ppm was 3:1, and in Fig. 6b, the

Acetone Oxime-¹⁵N and ¹⁴NO on H-ZSM-5

ratio of the relative integrated areas of the peaks at -148 and -235 ppm was 1 : 3. These results show that when ¹⁵NO reacts with acetone [¹⁴N]oxime on CuZSM-5 (Fig. 6e), the product N₂O contains the ¹⁵N label on the central nitrogen three times more often than on the terminal nitrogen. Similarly, when ¹⁴NO reacts with acetone [¹⁵N]oxime on CuZSM-5 (Fig. 6e), the product N₂O contains the ¹⁵N label on the terminal nitrogen. Similarly, when ¹⁴NO reacts with acetone [¹⁵N]oxime on CuZSM-5 (Fig. 6e), the product N₂O contains the ¹⁵N label on the terminal nitrogen three times more often than on the central nitrogen. The implications of the different intensities of the N₂O ¹⁵N NMR peaks are presented in the Discussion.

The overall integrated ¹⁵N signal intensities for the spectra shown in Figs. 2c, 4c, 5c, and 6c vary by less than 10%. This variation is most likely due to small differences in the amounts of acetone oxime adsorbed on the zeolites and the variation in the position of sealed samples loaded in the NMR rotor for each measurement.

The ¹³C NMR spectra (not shown) of ¹⁴NO and preadsorbed acetone [2-¹³C]oxime on HZSM-5 and on CuZSM-5 heated to various temperatures are similar to the ¹³C NMR spectra for the reaction of acetone [2-¹³C]oxime on HZSM-5 and on CuZSM-5 recorded in the absence of NO. One difference is a ¹³C NMR peak at 55 ppm that is observed after heating acetone [2-¹³C]oxime on HZSM-5 to 200°C. This peak at 55 ppm is assigned to methanol. In ¹³C single-pulse excitation spectra of acetone [2-¹³C]oxime on HZSM-5 heated to 350°C, a ¹³C NMR peak at 182 ppm was observed and is assigned to CO.

Acetone Oxime-¹⁴N and ¹⁵NO on HZSM-5

FIG. 5. ¹⁵N MAS NMR spectra of adsorbed acetone oxime and NO on HZSM-5. The ¹⁵N spectra of acetone [¹⁵N]oxime and ¹⁴NO on the left (a-c), were acquired at room temperature after the sealed sample was heated to the indicated temperatures. The spectra of acetone [¹⁴N]oxime and ¹⁵NO, on the right (d-f), were acquired at room temperature after the sealed sample was heated to the indicated temperatures. NS (number of scans acquired) was (a) 5800, (b) 5600, (c) 9200, (d) 12,000, (e) 15,400, and (f) 20,000.

Acetone Oxime-¹⁵N and ¹⁴NO on CuZSM-5

FIG. 6. ¹⁵N MAS NMR spectra of adsorbed acetone oxime and NO on CuZSM-5. The spectra of acetone [15 N]oxime and ¹⁴NO on the left (a–c), were acquired at room temperature after the sealed sample was heated to the indicated temperatures. The spectra of acetone [14 N]oxime and ¹⁵NO, on the right (d–f), were acquired at room temperature after the sealed sample was heated to the indicated temperatures. NS (number of scans acquired) was (a) 21,500, (b) 8500, (c) 6000, (d) 21,000, (e) 20,000, and (f) 20,000.

Reactions of the Adsorbed Hydrolysis Products of Acetone Oxime with NO

The reaction of various hydrolysis products of acetone oxime with NO on HZSM-5 and CuZSM-5 are presented in Fig. 7. Three main reaction products, N₂ (a single line at ca. -72 ppm), N₂O (central N at ca. -148 ppm and terminal N at ca. -232 ppm), and NH₄⁺ or CH₃NH₂ (-364 ppm), were observed in the spectra (Fig. 7). This suggests that the hydrolysis products of acetone oxime (as well as acetone oxime itself) react with NO to form N₂, N₂O, CH₃NH₂, and/ or NH₄⁺.

The ¹⁵N MAS NMR spectra of adsorbed H₂ ¹⁵NOH · HCl adsorbed on HZSM-5 and on CuZSM-5, and adsorbed CH3¹⁵NH2 · HCl adsorbed on HZSM-5, all with ¹⁴NO after heating to 150°C are presented in Figs. 7a-7c. [¹⁵N]Methylamine on HZSM-5 reacts with NO to form nitrogen as indicated by the peak at -72 ppm in Fig. 7a. The peak at -364 ppm in Fig. 7a is due to the unreacted [¹⁵N]methylamine adsorbed on HZSM-5. [¹⁵N]Hydroxylamine on HZSM-5 reacted with NO at 150°C (Fig. 7b) to form N_2O (peaks at -147 and -232 ppm) and NH_4^+ (peak at -364 ppm) (38). The relative intensities of the two N₂O peaks are approximately equal. When [¹⁵N]hydroxylamine was adsorbed on CuZSM-5, the sample turned green, indicating a strong interaction between the nitrogen of hydroxylamine and copper in ZSM-5. [¹⁵N]Hydroxylamine on CuZSM-5 (Fig. 7c) reacted with NO at 150°C to form N₂O

(peaks at -147 and 232 ppm) and N₂ (peak at -72 ppm). Again, the relative intensities of the two N₂O peaks are approximately equal, suggesting that the label appears equally on the central and terminal nitrogen atoms in N₂O.

The ¹⁵N MAS NMR spectra showing the reaction of adsorbed adsorbed acetone on CuZSM-5, H2¹⁴NOH · HCl on CuZSM-5 and on HZSM-5, adsorbed CH₃¹⁴NH₂·HCl on HZSM-5 all with ¹⁵NO after heating to 150°C are presented in Figs. 7d-7g. Since acetone is the major hydrolysis product of acetone oxime adsorbed on CuZSM-5, we examined the products formed when acetone and ¹⁵NO react on CuZSM-5 at 150°C (Fig. 7d). The products of the reaction of acetone and ¹⁵NO on CuZSM-5 at 150°C are N₂O (peaks at -147 and -232 ppm) and CH₃NH₂ or NH₄⁺ (peak at -364 ppm). In Fig. 7e, the reaction of methylamine adsorbed on HZSM-5 and ¹⁵NO at 150°C produces N₂ (peak at -72 ppm) and N₂O (peaks at -147 and -232 ppm). Since N₂O is not observed when [¹⁵N]methylamine and NO react on HZSM-5 at 150°C, the disproportionation of ¹⁵NO on HZSM-5 is thought to be responsible for the formation of N₂O. This result was confirmed in a separate experiment by the direct observation of ¹⁵NO disproportionation on HZSM-5. When hydroxylamine reacts with ¹⁵NO at 150°C on HZSM-5 (Fig. 7f) and CuZSM-5 (Fig. 7g), N₂O is produced on both CuZSM-5 and HZSM-5 as indicated by the peaks at -147 and -232 ppm and N₂ is formed on CuZSM-5 as indicated by the peak at -72 ppm.

FIG. 7. ¹⁵N MAS NMR spectra of the hydrolysis products of acetone oxime with NO on CuZSM-5 and HZSM-5 after heating to 150°C. All spectra were acquired at room temperature. On the left (a–c), are the spectra of the ¹⁵N-labeled hydrolysis products with ¹⁴NO on HZSM-5—after heating the sealed samples to 150°C: (a) CH_3 ¹⁵NH₂·HCl on HZSM-5+ ¹⁴NO, (b) H_2 ¹⁵NOH·HCl on HZSM-5+ ¹⁴NO, (c) H_2 ¹⁵NOH·HCl on CuZSM-5+ ¹⁴NO. On the right (d–g), the ¹⁵N MAS NMR spectra of the ¹⁴N-labeled hydrolysis products + ¹⁵NO—after heating to 150°C are shown: (d) acetone on CuZSM-5+ ¹⁵NO, (e) CH_3 ¹⁴NH₂·HCl on HZSM-5+ ¹⁵NO, (f) H_2 ¹⁴NOH·HCl+ ¹⁵NO on HZSM-5+ NO, (g) H_2 NOH·HCl on CuZSM-5+ ¹⁵NO. NS (number of scans acquired) was (a) 6000, (b) 11,000, (c) 20,000, (d) 12,000, (e) 20,000, (f) 12,000, and (g) 20,000.

DISCUSSION

Adsorption of Acetone Oxime on HZSM-5 and on CuZSM-5

The ¹³C chemical shift for the C-2 carbon of solid, synthesized acetone $[2^{-13}C]$ oxime was measured to be 156 ppm (vs TMS) (spectrum not shown here). However, the ¹³C chemical shifts of adsorbed acetone [2-13C]oxime on HZSM-5 and CuZSM-5 at 1:1 coverage were shifted downfield to 172 and 166 ppm, respectively, and were coverage-dependent. The shift of the C-13 NMR peak of acetone [2-¹³C]oxime on adsorption in the zeolites relative to "free" solid acetone oxime is evidence of an interaction with the zeolite. Because of spin diffusion and averaging at high coverage, the ¹³C NMR shift from the pure solid for the 8:1 coverage is much smaller in magnitude than for the 1:1 coverage. A similar coverage dependence has been observed for acetone adsorbed on various zeolites (33, 34, 40). The interpretation from this earlier work was that the ¹³C chemical shift of acetone depends on the degree of protonation of the carbonyl group of the adsorbed acetone, in other words on the acidity of the support. The ¹⁵N chemical shift for solid, synthesized acetone $[^{15}N]$ oxime was measured to be -55 ppm (vs CH₃ ¹⁵NO₂). The ¹⁵N NMR peaks from acetone [¹⁵N]oxime absorbed on HZSM-5 and on CuZSM-5 were shifted upfield to -148 and -102 ppm, respectively. The large upfield shifts from the ¹⁵N chemical shift values for solid acetone oxime on adsorption also suggest protonation of the acetone oxime. The ¹⁵N chemical shifts of imines have been shown to be very sensitive to protonation by NMR studies of imines in different solvents and adsorbed on zeolites (35, 36).

The chemical shifts (¹⁵N and ¹³C) of adsorbed acetone oxime on HZSM-5 and on CuZSM-5 are different, suggesting that the degree of protonation on the two zeolites is different. The ¹⁵N and ¹³C chemical shifts for solid synthesized acetone oxime and acetone oxime adsorbed on CuZSM-5 and HZSM-5 are plotted in Fig. 8. The ¹⁵N and ¹³C chemical shifts for acetone oxime adsorbed on CuZSM-5 lie between the chemical shifts for solid acetone and acetone oxime adsorbed on HZSM-5 and are linearly correlated. This implies that CuZSM-5 contains residual Brønsted acid sites that are weaker than the Brønsted acid sites in HZSM-5, so that the change in chemical shift of acetone oxime adsorbed on CuZSM-5 is smaller than for the more acidic HZSM-5 compared with the solid acetone oxime. Xu et al. have previously reported that the chemical shift for adsorbed probe molecules varies with the acidity of the zeolite (33).

It is also possible that the observed variations in chemical shift are due to the presence of the exchanged copper cations rather than the presence of acid sites. Perhaps the

FIG. 8. Plot of ¹⁵N and ¹³C chemical shifts for acetone oxime (acetone $[2^{-13}C]$ oxime and acetone $[^{15}N]$ oxime) adsorbed on CuZSM-5 and HZSM-5 and the solid synthesized acetone oxime (data from Table 2). The acetone oxime coverage was approximately one adsorbate molecule per Brønsted acid or cation site.

acetone oxime interacts with the exchanged copper species. In this study, copper (Cu^{2+}) is ion-exchanged into ZSM-5 from an aqueous solution of a copper salt. Several groups have reported the autoreduction of Cu^{2+} to Cu^+ after heating CuZSM-5 to 450°C (12, 31). However, the CuZSM-5 samples used in this study have been evacuated only at room temperature and are not rigorously dehydrated or autoreduced. Therefore, it is likely that the copper remains in the 2+ oxidation state over the course of these experiments.

Decomposition of Acetone Oxime Adsorbed on HZSM-5 and on CuZSM-5

Acetone oxime can be hydrolyzed by two different pathways as shown in Scheme 1. Acetone oxime can hydrolyze directly to produce acetone and hydroxylamine (reaction 1A), and/or acetone oxime can rearrange via the Beckman rearrangement to form *N*-methylacetamide (reaction 1B), which further hydrolyzes to produce acetic acid and methylamine (reaction 2) (41). The subsequent reaction of acetone and methylamine, which are the hydrolysis products in reactions 1 and 2, leads to the production of *N*-methyl-2-propanimine (reaction 3). The major products observed by ¹³C NMR when acetone [2-¹³C]oxime was decomposed on HZSM-5 were *N*-methylacetamide or acetic acid, and *N*-methyl-2-propanimine. Small amounts of acetone were

SCHEME 1. Reactions of acetone oxime.

also formed on HZSM-5. Acetone $[2^{-13}C]$ oxime adsorbed on CuZSM-5 decomposed to form acetone as the major product through the direct hydrolysis of acetone oxime as monitored by ¹³C NMR. Minor products, acetic acid and *N*-methyl-2-propanimine, were also observed in the ¹³C NMR spectra of acetone $[2^{-13}C]$ oxime on CuZSM-5. In a previous FT-IR/mass spectrometry study, acetone and hydroxylamine were the main hydrolysis products observed during the decomposition of acetone oxime on CuZSM-5 (41). In the same study, minor products, such as *N*-methylacetamide, acetic acid, and methylamine were also detected by FT-IR (41).

NMR peaks (Figs. 1 and 2) were observed at 197 ppm (¹³C NMR) and -191 ppm (¹⁵N NMR) when samples of adsorbed acetone oxime on HZSM-5 were heated to >150°C and these resonances have been assigned to N-methyl-2propanimine. The assignment of these resonances to Nmethyl-2-propanimine is based on two recent ¹³C MAS NMR studies of the reaction of acetone and amines on HZSM-5 (34, 35). Xu et al. observed that acetone and ammonia reacted to form 2-propanimine which has ¹⁵N and ¹³C NMR shifts of –190 and 197 ppm, respectively (35). Biaglow et al. observed the formation of 2-propanimine $(\delta_{C-13} = 199 \text{ ppm})$ from acetone and NH₃ and the formation of 2,2-*N*-methyl-2-propanimine ($\delta_{C-13} = 189$ ppm) from dimethylamine and acetone on HZSM-5 (34). These NMR peaks were assigned to the fully or partially protonated forms of the imines. The ¹⁵N chemical shifts of imines are verv sensitive to protonation and shifts of greater than 100 ppm have been observed for imines in solvents with different acidities (36). The chemical shifts observed in the NMR studies of related imines correspond very well with those observed in our experiments of acetone oxime decomposition on HZSM-5. NMR peaks from acetone oxime decomposition on CuZSM-5 at 190 ppm (¹³C NMR) and -98 ppm (¹⁵N NMR) in Figs. 3 and 4 are therefore assigned to N-methyl-2-propanimine. The different ¹⁵N chemical shifts found for N-methyl-2-propanimine on HZSM-5 and on CuZSM-5 are attributed to differences in the interaction of *N*-methyl-2-propanimine with acid sites and Cu²⁺ cation sites in HZSM-5 and CuZSM-5. Again this could be attributed to hydrogen bonding effects which are known to produce large variations in the NMR chemical shifts of imines (35).

 N_2 and N_2 O were also detected by ¹⁵N MAS NMR (Figs. 2 and 4) when samples of adsorbed acetone [¹⁵N]oxime on HZSM-5 and CuZSM-5 were heated to 150°C. Since acetone [¹⁵N]oxime is the only source of nitrogen, the gaseous (N_2 and N_2 O) products can only be ¹⁵N¹⁵N ($\delta_{N-15} = -72$ ppm) and ¹⁵N¹⁵NO [$\delta_{N-15} = -148$ (central N), -232 ppm (terminal N)]. Resonances attributable to hydroxylamine ($\delta_{N-15} = -298$ ppm) were not observed in the ¹⁵N NMR spectra in Figs. 2 and 4. Presumably this is because if any hydroxylamine formed, it reacted to produce N_2O and/or N_2 . The ¹⁵N NMR peak at -363 ppm in Fig. 2c has been assigned to methylamine. Only a weak and broad peak at -363 ppm is observed in the ¹⁵N NMR spectrum of acetone [¹⁵N]oxime on CuZSM-5 (Fig. 4c). This is due to a strong interaction between the paramagnetic Cu²⁺ and the amine group of methylamine or hydroxylamine. A color change (blue for methylamine and green for hydroxylamine) was observed when authentic samples of methylamine or hydroxylamine or hydroxylamine to the copper. EPR experiments have been done to verify the coordination of the nitrogen of the amine group to Cu²⁺.

Reactions of Adsorbed Acetone [¹⁵N]Oxime with ¹⁴NO

The ¹⁵N NMR spectra of acetone [¹⁵N]oxime adsorbed on HZSM-5 in the absence of ¹⁴NO (Fig. 2c) and in the presence of ¹⁴NO (Fig. 5c) indicate that N₂, N₂O, CH₃NH₂, and/or NH₄⁺ were formed on both samples after heating to 150°C. Two major differences between the spectra (Figs. 2c and 5c) should be noted. First, in Fig. 2c, an additional peak at –191 ppm due to *N*-methyl-2-propanimine was observed. Second, the peak due to methylamine ($\delta_{N-15} = -363$ ppm) is larger relative to the other gas-phase peaks in Fig. 2c than in Fig. 5c. The explanation is that the methylamine formed from the hydrolysis of acetone oxime adsorbed on HZSM-5 reacts with NO to form nitrogen as shown in Fig. 7a, while in the absence of NO, the methylamine remains adsorbed on HZSM-5 and then reacts with acetone.

There are two pathways for the formation of N₂ and N₂O when acetone [¹⁵N]oxime reacts with NO. One path results from the interaction of an adsorbed [¹⁵N]oxime complex (or its hydrolysis products) and gas-phase ¹⁴NO to form mixed-labeled N_2 (¹⁵N¹⁴N) and N_2O (¹⁵N¹⁴NO, ¹⁴N¹⁵NO). The second path is the decomposition of unreacted, adsorbed acetone [¹⁵N]oxime, resulting in doubly labeled ¹⁵N₂ and ¹⁵N₂O as shown in Fig. 2c. From the NMR results for the reaction of adsorbed acetone [¹⁵N]oxime with ¹⁴NO, it is difficult to quantify the amount of ¹⁵N₂ versus ¹⁴N¹⁵N or ¹⁵N¹⁴NO versus ¹⁴N¹⁵NO in Fig. 5c. The broadening of the peak at -148 ppm in Fig. 5c suggests that a substantial portion of the peak intensity is due to unreacted adsorbed acetone oxime which is more strongly adsorbed and less mobile than the gas-phase product N₂O. This is a reasonable since nitric oxide was the limiting reagent. This was further confirmed by comparing the peak at -148 ppm in the ¹⁵N NMR spectrum of unlabeled acetone oxime and labeled ¹⁵NO (Fig. 5f) which is much narrower than the peak formed with adsorbed acetone [¹⁵N]oxime present in Fig. 5c and contains no contribution from the unlabeled acetone oxime.

The ¹⁵N NMR spectra of acetone [¹⁵N]oxime adsorbed on CuZSM-5 and ¹⁴NO (Figs. 6a–6c) showed that N_2 and N_2O were formed at 25 and 100°C, and some unreacted acetone [¹⁵N]oxime was still present (peak at -102 ppm).

The gaseous products formed at 25 and at 100°C are mixedlabeled ¹⁴N¹⁵N, ¹⁴N¹⁵NO, and ¹⁵N¹⁴NO resulting from the interaction of adsorbed acetone [¹⁵N]oxime and gas-phase ¹⁴NO as previously observed by Beutel *et al.* (41). The doubly labeled products, ¹⁵N₂ and ¹⁵N₂O, were ruled out as possible products because the formation of these products from adsorbed acetone [¹⁵N]oxime did not occur until the sample was heated to 150°C and above (Fig. 4c). The data demonstrate that the interaction of adsorbed acetone [¹⁵N]oxime and/or its ¹⁵N-labeled hydrolysis products with ¹⁴NO results in the formation of a new ¹⁵N-¹⁴N bond. The reaction of acetone oxime with NO to form N_2 and N_2O occurs at room temperature on CuZSM-5. It should be noted from the ¹⁵NMR spectra (Figs. 6b and 6c) that the ratio of the integrated areas of the ¹⁵N NMR peaks for ¹⁵N¹⁴NO over $^{14}N^{15}NO$ is ~ 3 when acetone [^{15}N]oxime is reacted with ¹⁴NO. These results are consistent with the study of Beutel et al., who observed mixed-labeled ¹⁴N¹⁵N, ¹⁴N¹⁵NO, and ¹⁵N¹⁴NO by FT-IR/mass spectrometry studies (41). However, they were not able to quantify the ratio of ¹⁵N¹⁴NO to ¹⁴N¹⁵NO since ¹⁴N¹⁵NO and ¹⁵N¹⁴NO could not be distinguished by mass spectrometry. Using $^{15}\!N$ NMR we were able to easily distinguish $^{14}\!N^{15}NO$ and $^{15}\!N^{14}NO$ because the inequivalent nitrogen atoms possess different chemical shifts.

Reactions of Adsorbed Acetone [14N]Oxime with 15NO

To simplify the ¹⁵N NMR identification of N₂ and N₂O as singly or doubly labeled, reactions of adsorbed acetone [¹⁴N]oxime in the presence of ¹⁵NO were conducted. This experiment eliminated the ¹⁵N doubly labeled products from the direct decomposition of acetone [¹⁵N]oxime into ¹⁵N₂ and ¹⁵N₂O. ¹⁵N MAS NMR showed that N₂ and N₂O were produced when a sealed sample of ¹⁵NO and adsorbed acetone [¹⁴N]oxime on HZSM-5 was heated to 150°C (Fig. 5f). No products were detected by ¹⁵N NMR below that temperature. Previously, ¹⁵NO alone on HZSM-5 produced N_2 and N_2O even at room temperature (39), suggesting that the active sites of HZSM-5 are blocked by adsorbed acetone [¹⁴N]oxime in our experiments since no products are detected below 150°C. Therefore, N₂ and N₂O observed at 150°C were not from the ¹⁵NO disproportionation reaction and were not from the decomposition of adsorbed acetone oxime either, since the adsorbed acetone oxime is not ¹⁵N-labeled. The remaining option is that the N_2 and N_2O observed at 150°C on HZSM-5 resulted from the interaction of adsorbed acetone [14N]oxime and/or its ¹⁴N-labeled hydrolysis products with ¹⁵NO. The products should be mixed-labeled ¹⁴N¹⁵N. ¹⁴N¹⁵NO. and ¹⁵N¹⁴NO.

A sealed sample of ¹⁵NO and adsorbed acetone [¹⁴N]oxime on CuZSM-5 showed the formation of N₂ and N₂O at 25°C (Figs. 6d–6f). The spectrum did not change when the sample was heated to 100 and 150°C. Just as on HZSM-5, the decomposition products from adsorbed ace-

tone [¹⁴N]oxime cannot be detected by ¹⁵N NMR since the adsorbed acetone oxime is not ¹⁵N labeled. The N₂ and N₂O observed were not from the ¹⁵NO disproportionation either as confirmed in a separate experiment of ¹⁵NO disproportionation on CuZSM-5. It is the reaction of adsorbed acetone [¹⁴N]oxime and/or its ¹⁴N-labeled hydrolysis products with ¹⁵NO that results in the formation of mixed-labeled N_2 (¹⁴N¹⁵N) and N_2O (¹⁴N¹⁵NO and ¹⁵N¹⁴NO) as previously observed by Beutel et al. (41). The observed partitioning between ¹⁴N¹⁵NO and ¹⁵N¹⁴NO is approximately 3:1. Comparison of Figs. 6b and 6e illustrates that the opposite partition is obtained when the isotopic labeling is reversed and acetone [15N]oxime and 14NO react on CuZSM-5. This suggests that the nitrogen-oxygen bond of ¹⁵NO remains intact when it reacts with adsorbed acetone [¹⁴N]oxime to preferentially form ¹⁴N¹⁵NO. The fact that some ¹⁵N¹⁴NO is also formed implies that there is a second route for the production of N₂O when adsorbed acetone ¹⁴N]oxime and ¹⁵NO react on CuZSM-5. The second route is likely to be the reaction of the hydrolysis products of acetone oxime reacting with ¹⁵NO. For example, hydroxylamine adsorbed on CuZSM-5 reacted with ¹⁵NO (Fig. 7g) to give N₂ and N₂O, and the two peaks of N₂O were of equal intensity, suggesting no preference for the position of the label.

Reactions of Adsorbed Hydrolysis Products of Acetone Oxime with NO

To clarify the source of gas-phase N₂ and N₂O products, the interaction of the hydrolysis products of acetone oxime with gas-phase NO has been investigated. Since hydroxylamine, acetone, and methylamine were formed during the hydrolysis of acetone oxime on CuZSM-5 and HZSM-5, authentic samples of these hydrolysis products were adsorbed on CuZSM-5 and HZSM-5. [¹⁵N]Hydroxylamine, one of the minor hydrolysis products formed on HZSM-5, reacted with-gas phase ¹⁴NO to form N₂O with very little production of N₂. Isotopic labeling studies showed that approximately equal amounts of ¹⁵N¹⁴NO and ¹⁴N¹⁵NO and some ${}^{15}NH_4^+$ were formed (Fig. 7b) due to the reaction of adsorbed [¹⁵N]hydroxylamine on HZSM-5 with ¹⁴NO starting at room temperature. This observation implies the formation of a ¹⁴N-¹⁵N bond between ¹⁵NH₂OH and NO on HZSM-5. The broadening of the peak at -364 ppm (which is assigned to NH⁺₄) suggests strong bonding to the zeolite. When [¹⁵N]hydroxylamine reacts with ¹⁴NO on CuZSM-5, both N₂ and N₂O are formed (Fig. 7c), starting at room temperature. The integrated areas of the two N₂O peaks are approximately equal, suggesting equal amounts of ¹⁵N¹⁴NO and ¹⁴N¹⁵NO are formed.

Equal amounts of ${}^{14}N^{15}NO$ and ${}^{15}N^{14}NO$ were also observed after reaction at 100°C and above for a sealed sample of [${}^{14}N$]hydroxylamine adsorbed on HZSM-5 in the

presence of ¹⁵NO (Fig. 7f). With the same adsorbates on CuZSM-5, approximately equal amounts of ¹⁴N¹⁵NO and ¹⁵N¹⁴NO were observed starting at room temperature, but a measurable amount of N₂ (¹⁴N¹⁵N) was not detected until ~150°C (Fig. 7g). These isotopic labeling experiments clearly show that the hydrolysis product, hydroxylamine, reacts easily with NO to form a new N–N bond, on both catalysts, with two N atoms from two different sources: one N from adsorbed hydroxylamine and the other N from gaseous NO, without preference. Beutel *et al.* observed the formation of mixed-labeled N₂ and N₂O when hydroxylamine and NO reacted on CuZSM-5, but they could not distinguish the ¹⁴N¹⁵NO and ¹⁵N¹⁴NO (41).

Methylamine, the primary hydrolysis product of acetone oxime on HZSM-5, reacted with gas-phase NO to form nitrogen. The authentic sample of [¹⁵N]methylamine · HCl adsorbed on HZSM-5 in the presence of ¹⁴NO resulted in two NMR peaks due to the formation of nitrogen (–72 ppm) and unreacted methylamine (–363 ppm) after heating to 150°C (Fig. 7a). The authentic sample of [¹⁴N]methylamine · HCl on HZSM-5 reacted with ¹⁵NO to form both N₂ and N₂O (Fig. 7e). The N₂O results from the disproportionation of ¹⁵NO on HZSM-5, since no N₂O was observed when methylamine reacts with unlabeled NO.

Since acetone is the major hydrolysis product of acetone oxime on CuZSM-5, the reaction of acetone with NO was also studied (Fig. 7d). The sealed sample containing the adsorbed acetone on CuZSM-5 and ¹⁵NO showed the formation of N₂O starting at room temperature. After heating to 150°C and subsequently cooling to room temperature for the NMR spectrum, a new peak at -364 ppm emerged, and this peak was assigned to CH₃NH₂ or NH₄⁴.

Implications of these Results for the Mechanism for SCR of NO_x by Propane

Solid-state NMR has proven to be a valuable tool for studying the reactions of acetone oxime, a proposed intermediate for the SCR of NO_x with propane on CuZSM-5 and HZSM-5. In the absence of NO, acetone oxime decomposes primarily to acetone, hydroxylamine, nitrogen, and nitrous oxide on CuZSM-5 and acetic acid, methylamine, nitrogen, and nitrous oxide on HZSM-5. The different products observed on the two zeolites reflect differences in the Brønsted acid sites and in the cation sites present in HZSM-5 and CuZSM-5. The reactivity of acetone oxime adsorbed on HZSM-5 is a result of the acid-catalyzed Beckman rearrangement of acetone oxime to N-methylacetamide which subsequently hydrolyzes to acetic acid and methylamine (Scheme 1). The reactivity of CuZSM-5, which has a smaller number of acid sites, is governed by the direct hydrolysis of acetone oxime to acetone and hydroxylamine. On both CuZSM-5 and HZSM-5, nitrogen and nitrous oxide are formed from adsorbed acetone oxime after heating to ${\sim}150^\circ\text{C}$ presumably from reaction of acetone oxime and its nitrogen-containing hydrolysis products, such as methylamine and hydroxylamine.

The NMR studies were conducted under conditions of thermodynamic equilibrium and at temperatures substantially below the relevant catalytic temperatures of ~400°C. Therefore, information about the catalytic mechanism cannot be directly determined from the NMR results. Acetone oxime and NO on CuZSM-5 and HZSM-5 react to form nitrogen, nitrous oxide, and NH_4^+ or methylamine. Reaction of a nitrogen-containing surface species with NO to form N₂ has previously been suggested by a number of researchers as a crucial element of the SCR mechanism (10, 12, 15, 20, 22, 23, 41). Nitrogen and nitrous oxide are formed at room temperature on CuZSM-5, but not until 150°C on HZSM-5, suggesting that the reaction of acetone oxime and NO to form nitrogen and nitrous oxide on CuZSM-5 is more facile than the reaction of acetone oxime and NO to form hzsM-5.

The NMR results from the reaction of acetone oxime with ¹⁵NO on CuZSM-5 to form N₂O demonstrate that the ¹⁵NO bond (of gas phase NO) remains intact when it reacts with acetone oxime as evidenced by the NMR peak intensities of the product N₂O. This result is consistent with the mechanism proposed by Adelman *et al.* (23) for NO_x reduction of propane over CuZSM-5. Their mechanism suggests that acetone oxime reacts with NO to form an intermediate that further decomposes to N₂O and an oxygenated hydrocarbon species. Li and Armor have observed the decomposition of N₂O to N₂ on transition metal-exchanged zeolites and, in particular, on CuZSM-5 under SCR reaction conditions (42). Rebrov et al. observed N₂O on lowloaded CuZSM-5 catalysts under SCR reaction conditions (21). The final step of the mechanism shows further reaction of the oxygenated intermediate and N₂O to form nitrogen, acetone, and water (23). The NMR results presented in this paper support the previously proposed intermediacy of acetone oxime in the SCR of NO_x by propane and provide additional details about the reactions of acetone oxime on HZSM-5 and CuZSM-5 under conditions of thermodynamic equilibrium.

CONCLUSIONS

Solid-state NMR was used to investigate the reactions of acetone oxime adsorbed on CuZSM-5 and on HZSM-5. The decomposition of isotopically labeled acetone oxime on HZSM-5 and on CuZSM-5 was monitored using ¹⁵N and ¹³C NMR. The predominant reaction path for acetone oxime was different on HZSM-5 and on CuZSM-5. The differences are attributed to an enhancement of acid chemistry on HZSM-5 which leads to the formation of acetic acid and methylamine by acid-catalyzed reactions. On CuZSM-5, acetone oxime decomposes primarily to acetone and hydroxylamine. Acetone oxime and its hydrolysis products further react to form N_2 and N_2O on both zeolites. Acetone oxime reacts with gas-phase NO on HZSM-5 and on CuZSM-5 to form a new N–N bond. The nitrogen comes from two different sources: one from the adsorbed oxime complex and the other from gas-phase NO. The ¹⁵N NMR results show that the NO bond of gas-phase NO remains intact when it reacts with adsorbed acetone oxime to form N_2O . The reaction of acetone oxime and NO to form N_2 and N_2O proceeds at room temperature on CuZSM-5, but not until 150°C on HZSM-5.

 $^{15}\rm N$ NMR has provided important information, such as the identification and quantification of $^{15}\rm N^{14}\rm NO$ and $^{14}\rm N^{15}\rm NO$, which are not distinguished in mass spectrometry. In addition, NMR was used to determine the partition between $^{14}\rm N^{15}\rm NO$ and $^{15}\rm N^{14}\rm NO$ in product N₂O. The results demonstrate the potential of solid-state NMR for studying surface species that may be important catalytic intermediates.

ACKNOWLEDGMENTS

Acknowledgment is made to the University of Iowa and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for funding of this research. Dr. Russell Larsen is acknowledged for assistance with experiments and helpful discussions. Professor John Wiencek is acknowledged for use of his ICP/AES instrument.

REFERENCES

- 1. Bosch, H., Janssen, F., Catal. Today 2, 369 (1987).
- Iwamoto, M., Yahiro, H., Shundo, Y., Yu-u, Y., Misonu, N., *Shokubai* 32, 430 (1990).
- Held, W., Konig, A., Richter, T., and Pupper, L., SAE Paper 900, 469 (1990).
- 4. Shelef, M., Chem. Rev. 95, 209 (1995).
- 5. Cho, B. K., J. Catal. 142, 418 (1993).
- 6. Li, Y., and Armor, J. N., Appl. Catal. B1, L3 (1991).
- 7. Li, Y., and Armor, J. N., Appl. Catal. B 3, 239 (1994).
- 8. Burch, R., and Scire, S., Appl. Catal. B 3, 295 (1994).
- 9. Feng, X., and Hall, W. K., J. Catal. 166, 368 (1997).
- Beutel, T., Adelman, B., and Sachtler, W. M. H., *Catal. Lett.* 37, 125 (1996).
- 11. Li, Y., Slager, T. L., and Armor, J. N., J. Catal. 150, 338 (1994).
- 12. Witzel, F., Sill, G. A., and Hall, W. K., J. Catal. 149, 229 (1994).

- 13. d'Itri, J. L., and Sachtler, W. M. H., Appl. Catal. B 2, L7 (1993).
- 14. Montreuil, C. N., and Shelef, M., Appl. Catal. B1, L1 (1992).
- Halasz, I., Brenner, A., Ng, K. Y. S., and Hou, Y., J. Catal. 161, 359 (1996).
- Ukiso, Y., Sato, S., Abe, A., and Yoshida, K., *Appl. Catal. B* 2, 147 (1993).
- Sadykov, V. A., Baron, S. L., Matyshak, V. A., Alikina, G. M., Bunina, R. V., Rozovskii, A. Ya., Lunin, V. V., Lunina, E. V., Kharlanov, A. N., Ivanova, A. S., and Veniaminov, S. A., *Catal. Lett.* **37**, 157 (1996).
- Adelman, B. J., Beutel, T., Lei, G.-D., and Sachtler, W. M. H., *J. Catal.* 158, 327 (1996).
- 19. Smits, R. H. H., and Iwasawa, Y., Appl. Catal. B 6, L201 (1995).
- 20. Yokoyama, C., and Misono, M., J. Catal. 150, 9 (1994).
- Rebrov, E. V., Simakov, A. V., Sazonova, N. N., Rogov, V. A., and Barannik, G. B., *Catal. Lett.* 51, 27 (1998).
- 22. Kharas, K. C. C., Appl. Catal. B Environ. 2, 207 (1993).
- Adelman, B. J., Beutel, T., Lei, G.-D., and Sachtler, W. M. H., *Appl. Catal. B* 11, L1 (1996).
- Cowan, A. D., Dumpelmann, R., and Cant, N. W., J. Catal. 151, 356 (1995).
- Barton, D., and Ollis, W. D., *in* "Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds" (J. L. Sutherland, Ed.), Vol. 2, p. 391 (1979).
- Haw, J. F., *in* "NMR Techniques in Catalysis" (A. T. Bell and A. Pines, Eds.), pp. 139–194 (1994).
- 27. Slichter, C. P., Annu. Rev. Phys. Chem. 37, 25 (1986).
- 28. Duncan, T. M., Colloids Surf. 45, 11 (1990).
- Narita, E., Sato, K., Yatabe, N., and Okabe, T., *Ind. Eng. Chem. Prod. Res. Dev.* 24, 507 (1985).
- 30. Shiralkar, V. P., and Clearfield, A., Zeolites 9, 363 (1989).
- Larsen, S. C., Aylor, A., Bell, A. T., and Reimer, J. A., *J. Phys. Chem.* 98, 11533 (1994).
- 32. Semon, W. L., "Organic Synthesis," Coll. Vol. 1, p. 318 (1941).
- Xu, T., Munson, E. J., and Haw, J. F., J. Am. Chem. Soc. 116, 1962 (1994).
- Biaglow, A. I., Sepa, J., Gorte, R. J., and White, D., J. Catal. 151, 373 (1995).
- Xu, T., Zhang, J., and Haw, J. F., J. Am. Chem. Soc. 117, 3171 (1995).
- 36. Allen, M., and Roberts, J. D., J. Org. Chem. 45, 130 (1980).
- Mastikhin, V. M., Mudrakovsky, I. L., and Filimonova, S. V., Chem. Phys. Lett. 175 (1988).
- Michel, D., Germanus, A., and Pfeifer, H., *J. Chem. Soc. Faraday Trans.* 78, 237 (1982).
- Mastikhin, V. M., and Filimonova, S. V., J. Chem. Soc. Faraday Trans. 88, 1473 (1992).
- Biaglow, A. I., Gorte, R. J., Kokotailo, G. T., and White, D., *J. Catal.* 148, 779 (1994).
- Beutel, T., Adelman, B. J., Lei, and Sachtler, W. M. H., *Catal. Lett.* 32, 83 (1995).
- 42. Li, Y., and Armor, J., Appl. Catal. B Environ. 3, 55 (1993).